
Modeling service systems
Wout Hofman1 , Yoa-Hua Tan2,

1 TNO, P.O. Box 5050, 2600 GB, The Netherlands (wout.hofman@tno.nl)
2 Faculty TBM, TUDelft, Postbus 5015, 2600 GA, Delft (y.tan@tudelft.nl)

Abstract. Service systems in general take a holistic approach to include several
aspects, e.g. organizational structure, economics, people, and IT. They are in
principle not limited to organizational boundaries. This paper considers a multi-
actor service system of collaborating organizations for value exchange, the Beer
Living Lab [33], to analyze the applicability of a particular modeling technique
for modeling service systems. The focus of the paper is on information aspects;
other papers already describe value exchanges modeled by e3value [33].
WSMO, Web Service Modelling Ontology [1], a formal specification method
for web services based on Abstract State Machines [14], is analysed as a basis
for modelling information exchange. WSMO consists of a number of concepts
to support mediation between goals of service consumers and web service
capabilities of service providers. It can easily be applied to simple, atomic
interaction patterns like request – response, but usability of WSMO for
modelling service systems is insufficient. Modelling service systems with many
organizations must support autonomy of those organizations. Mediation can
offer solutions, but is not yet fully feasible.

Keywords: Service system, service science, web services, WMSO, e-customs,
ITAIDE

1 Introduction

Over the past decades, services have become the most important part of economies
[3]. Basically, the service economy refers to the service sector. It leads to more
sophisticated forms of cooperation, or what is called value co-creation [4]. From an
economic perspective, these systems are described as service systems. Research in
this particular area is called service science [4]. There is sufficient technology
available for technically integrating these systems, but our basic research question is
whether conceptual methods support modelling these types of systems. More in
particular, we explore the applicability of WSMO for modelling service systems,
since it is technology independent.

We consider the Beer Living Lab, a living lab of ITAIDE, as a useful case since it
relates to development of a complex, highly regulatory infrastructure with
organizational, legal and IT aspects covering all EU Member States. It is an example of
a multi-actor service system. We first present the case, secondly discuss WSMO, and
thirdly present the results of our research. We will show, that although WSMO
supports modelling complex services, mediation is crucial for these systems. The
required levels of mediation are not yet feasible.

2 The Beer Living Lab: a multi-actor service systems

The European Commission has launched the initiative for developing one contact
point in all EU member states (Single Window) for customs control of goods
movements into (import) and out of (export) the EU and between (transit) EU Member
States as part of the e-customs program. ITAIDE, an EU FP6 funded project,
contributes to this infrastructure by developing and testing web services in practical
applications, one of them being the movement of excise goods (beer) between two EU
Member States. Development of web services is based on a data structure that is
modelled with UMM (UN/Cefact Modelling Method [2]).

The Beer Living Lab is an example of a service system is briefly introduced with
relevant issues from a modelling perspective. In ITAIDE, the focus has been on risk
reduction from a customs perspective by introducing two innovations. In this particular
paper, we are interested in modelling information exchange from a service systems
perspective.

2.1 Introduction to the BeerLL

The Beer Living Lab, abbreviated to BeerLL, is a living lab case study that was
conducted in 2006-2007 as part of the research project ITAIDE1. Participants in the
BeerLL were Heineken NL, a large Dutch beer producer, Heineken UK, an
independent company that buys beer from Heineken NL, a UK retailer, and the Dutch
Tax Administration. In the BeerLL innovative IT was piloted to introduce electronic
customs, where paper-based control procedures were replaced by electronic
procedures. The ultimate goal of the project was to use electronic customs to improve
the security and efficiency of international supply chains in the beer industry. One of
the improvements is the introduction of a smart container seal for monitoring the
physical status and movement of a container, the TREC device, and the other web
services to constantly monitor this status and the accompanying administrative data.
e3value has been applied to model the current and the to-be situation from the
perspective of value exchange.

The BeerLL is a complex service system composed of different service providers to
transport containers from the Netherlands (input) to the final destination in the UK
(output). From a customer’s perspective, it may be a pull by a retailer to Heineken UK
for delivering a beer. Heineken UK may ‘pull’ a container from Heineken NL. For
timely delivery to a customer, intermediate storage is introduced, e.g. the UK
warehouse. A retailer also may have its particular warehouse facilities, in which case
the scenario for delivery of beer to a customer is different from the one based on the
UK warehouse. Although the case focused on the risk reduction from a customs
perspective by introducing two innovations, we use the complete case as the basis for
specifying a service system like the BeerLL in WSMO (see further).

The BeerLL represents one value chain in the selling and distribution of beer to
customers from Heineken’s perspective. It reflects a situation of direct delivery from
Heineken NL to a supermarket by a carrier controlled by Heineken UK. Heineken UK

1 The ITAIDE project is funded by the 6th Framework IST Programme of the European Commission, for

further information see www.itaide.org.

arranges transport between the Netherlands and the UK to the supermarket, which is
visualized by one carrier. In practice the carrier might be a forwarder that arranges
transport to a Dutch port, sea transport to the UK, and transport to the supermarket,
which adds complexity to the BeerLL service system. Excise payment to UK Tax is by
the UK retailer upon reception of the beer.

Other value chains are also implemented in practice, supported by business process
models of each organization in the logistic chain. One value chain is for instance that
beer is already physically located in the UK for delivery to a supermarket, without
excise payment. The containers with beer are stored in a warehouse under customs
regime, a so-called excise warehouse [20], until the beer is actually upon order
transported to a retailer and sold for consumption. Excise has to be paid by the UK
retailer to the UK Tax office when a container with leaves the excise warehouse.
Heineken has to provide the evidence to Dutch Tax that excise has been paid in the
UK. Upon request, Dutch Tax can ask Heineken to provide the necessary documents
for manual validation against a previously made declaration.

Whereas the total number of value chains from Heineken’s perspective is over five,
selling beer in the Netherlands (two value chains), selling beer in another EU Member
State (two value chains, and selling beer outside EU, a logistic service provider acts as
a ‘hub’ in many value chains. A modelling technique needs to be flexible to support
these requirements.

A data structure has been developed by ITAIDE to support all data exchange in the
BeerLL. The data structure is based on the Core Component Technical Specification
(CCTS, [5] and [6]) and constructed in accordance to the UN/Cefact Modelling
Method (UMM, [2]) based on the Unified Modelling Language (UML). UMM consists
of a number of templates that need to be filled for modelling cases like the BeerLL.
The main focus of these templates is to construct business models of each organization
supporting a particular logistic scenario. The templates do not encompass business
rules for the selection of a value chain. Core Components are standardized data types
that can be simple or aggregated. ‘Street’ and ‘date’ are examples of simple types;
‘address’ can be defined as an aggregate component consisting of ‘street’, ‘number’,
‘ZIP code’, and ‘city’. For customs purposes, concepts like shipper (Heineken NL in
the BeerLL) and consignee (Heineken UK) need to be modelled. The concept ‘shipper’
refers to an ‘address’ component and is extended with the concepts ‘identifier’ and
‘name’. The latter concepts are attributes of the UML class ‘shipper’.

2.2 Requirements to a formal model

This section lists a number of requirements derived from the BeerLL for a formal
method. Basically, a formal method needs to support both data and process aspects.
Data aspects should support the following requirements:

• Reference to other data structures like the core components should be
supported. Applicable core components should not be adjusted to cater for
requirements of a particular business domain to allow interoperability.

• XML Schema of interactions between organizations should be directly derived
out of data structure. It allows consistency of semantics across all XML
Schema, which improves interoperability within logistic chains. This latter
requirement was not supported in modelling the BeerLL case. Notice that in

international trade and logistics, Electronic Data Interchange is still widely
used and thus also needs to be supported.

• Alignment of different data structures, which is solved in the BeerLL by
composing a common data structure.

Process aspects of the BeerLL refer to modelling interaction sequencing of all
possible value chains. There are two relevant issues that need to be supported by a
formal modelling method:

• It should support the concept of business rules that govern the selection of an
appropriate value chain for a particular customer order, i.e. the usage of a
warehouse or the direct pull of beer containers from the producer, Heineken
NL.

• It should support interleaving of interactions to allow for instance the reception
of a planning from a carrier and a delivery instruction from Heineken NL by
Heineken UK in an arbitrary order.

• Exceptions that occur in logistics should be supported, i.e. exceptions that arise
due to accidents and damage.

As part of the BeerLL, processes are redesigned with UMM to safeguard changes.
These changed processes are not implemented. Instead, the common model is
implemented in a gateway linking to internal systems and supporting web services for
data access based on that common model.

These requirements are all combined under the umbrella ‘autonomy’. In a multi-
actor service system, each actor is autonomous in decision making, business process
configuration, semantics, and its supporting IT. A formal method should be able to
support autonomy.

3 Web Service Modeling Ontology

Service Oriented Architecture (SOA, [7]) stems from integrating applications and is
the main IT paradigm supported by open standards as underpinning technology for
service systems. Organizations can be integrated, based on the description of their
externally observable behaviour, without the need for knowledge of their internal
functioning. Thus, SOA seems to be applicable for modelling a multi-actor service
system.

Most often, SOA refers to open standards for the technical representation of
services, i.e.. Web Service Definition Language (WSDL, [7]) and XML Schema
(XML: eXtensible Markup Language). It has been widely accepted that these open
standards lack semantics and behavioural aspects [11]. There are various initiatives for
adding semantics to services, namely OWL-S (Semantic Markup for Web Services [8],
[9]), SAWSDL (Semantic Annotations for WSDL and XML Schema [10], [11]), and
WSMO (Web Service Modelling Ontology [1]). We will investigate whether or not
WSMO as one of these developments is able to model service systems. Additionally,
conceptual approaches have been defined for multi-actor service systems, e.g. COSMO
[Error! Reference source not found.]. It is not feasible to discuss all relevant
modelling methods and concepts. Therefore, this contribution is limited to WMSO.
This section gives a brief overview of the main elements of Web Service Modelling
Ontology (WSMO) and presents observations regarding its usability of WSMO.

3.1 Main elements of WSMO

WSMO is based on the theory of Abstract State Machines (ASM, [14]). In ASM a
real world system is modelled by its state space and a set of transition acting on this
state space. Transitions will give a new state formulated by post-conditions, if certain
conditions are met (pre-conditions). Pre- and post-conditions can refer to the state
space and external events that change the state space.

From a service perspective, a proper set of transitions needs to be discovered to
meet customer requirements. To discover these transitions, the goal of a customer and
the capability of a service provider have been introduced. Both goal and capability are
defined by pre- and post-conditions, and additionally by assumption of the world
outside the state space and possible effects by the transition on that outside world.
After discovery of a capability, the proper transitions can be executed. These
transitions are defined by the interface of a service with its choreography.

Additionally, the following design principles are supported by WSMO (see also[1]
and [12]):

• Unique identification of resources and Namespace.
• Description of resources and data are ontology-based (the state space)
• Each resource is described separately to reflect the distributed nature of the

web (decoupling).
• User requests can be formulated independent of service provision (goals and

capabilities).
• Mediation addresses the issues of interoperability of heterogeneous resources.
• A web service is a computational entity and a service the actual value provided

by invocation of a web service. Thus, a web service is the abstract
specification of a service.

These design principles are supported by the following concepts:
• Information semantics to specify the state space by means of ontology.

Ontology consists of concepts, associations, rules (called axioms in WSMO),
and instances (see also [13]).

• Functional semantics of services for the purpose of service discovery are
specified by capability. By mediation, a goal can be matched to a capability.

• The actual behaviour of a service is expressed by choreography offered across
and interface.

• Non-functional properties that are constraints to services. They cannot be
expressed in WSMO.

• Grounding WSMO service specifications to WSDL message types and
operations [25]. Grounding provides functionality for transformations from
XML data to ontology instances and vice versa, and references to WSDL
messages.

• Mediators resolve interoperability mismatches between different elements, e.g.
between two services. They solve heterogeneity problems.

Most examples of services modelled by WSMO are fairly simple, e.g. the booking
of a trip that requires booking information (pre-condition) and results in a reservation
(post-condition). The assumption for this capability is that a valid payment method is
used and the trip has been paid for by charging the account linked to the payment
method for the required amount (effect).

3.2 Observations

This part of the paper contains a number of observations that have implications to
usability of WSMO for modelling service systems like the BeerLL. Ideally, functional
semantics and behaviour are related. The pre- and post-conditions of a capability
should relate to the state change invoked by a choreography. Currently, they can be
specified independent of each other, which can lead to inconsistencies. This is a
simple issue that needs to be solved in a workbench like WSMO studio.

A more important issue is the support of both choreography and orchestration by
transition rules, which is inherent to the application of ASM to services. It implies that
choreography of a service expresses not only the input and output state of that service,
but can consist of various internal states specifying an orchestration of that service.
Each individual transition rule of choreography will give another internal state.
Depending on that particular internal state, one or more other transition rules of
‘choreography’ can be executed. The internal states are expressed by the condition and
the effect of a transition, respectively. This issue directly relates to the application of
ASM to web service modelling.

We observe two issues with respect to internal states. The first issue is of
determinism relevant for machine-to-machine communication in multi-actor service
systems. Sequence of transition is implicit. Two transition rules are executed
sequentially, if the effect of the first gives a state that fits the condition of the second.
Transition rules can also be executed in parallel, but parallelism can not be expressed
separately. One could for instance specify two transition rules with identical
conditions. In WSMO it is not determined which transition rule will execute. From an
abstract perspective they will be executed both at the same time, which can lead to
unexpected behaviour by a system initiating those transitions. The choice to execute
one of two or more transition rules with identical conditions is said to be non-
deterministic. Another way to cater for this problem is to define one transition rule
encompassing the execution of two or more parallel ones. Thus the condition is only
mentioned once. Other operators like ‘join’ are implicit in case two or more transition
rules alter the internal state in such a way that a condition for one other transition rule
can be met.

The second issue is a usability issue. A designer is not able to graphically design a
flow of transition rules by drawing the internal states connecting those transition rules.
Relations between transition rules are implicitly specified by the state of the shared
information space.

In the past, a lot of effort and research is spent on developing formal specification
methods [22]. Determinism is one of the challenges that need to be solved in those
methods. Adding the notion of ‘time’ is a means to introduce determinism.

4. Application of WSMO to the BeerLL

We have identified a number of requirements to a formal method like WSMO to
support the modelling of service systems like the BeerLL. Firstly, the support of
BeerLL data requirements by WSMO are investigated and, secondly, the process
requirements. We present our findings in the following section. Basically, we have
transformed a simplified class diagram of ITAIDE in WSMO ontology and specified

a capability with its choreography. In our examples, we do not include aspects in this
specification that are not relevant, e.g. non functional properties of a concept, an
attribute, a web service, etc. These non functional properties refer to Dublin Core
elements like creator, publisher, etc. [16]. From a modelling perspective, non
functional properties are of importance with respect to maintenance of (parts of)
ontology.

4.1 Data requirements: the ITAIDE ontology

A simplified class diagram of the BeerLL can be expressed as ontology. It specifies
the data requirements of the complete service system and is therefore not limited to a
particular organization in that service system.

Fig. 1. ITAIDE ontology (modelled in WSMO Studio)

We tried to create several layers of ontology to fully accommodate the core
component approach. The ontology, called ‘goodsDeclaration’, reflects the ITAIDE
class diagram. Basically, it consists of two parts. The first part reflects the core
components that are the basis for specifying the ITAIDE class diagram. As basic core
components we constructed currency codes with a limited list of codes and city
names. These basic concepts can be used to specify particular code values. Each
instance of those concepts has a particular name and a code. Relations between
instances like a city name like ‘Zoetermeer’ and its code are expressed by a value of
the attribute ‘code’ of the concept ‘city name’. The association between city name and
code can be made symmetric, meaning that a code has also a name. The concept
address assigns the concept ‘city’ as the range of an attribute. Thus, an address can be
constructed based on a particular city name, street and number and postal code. The
postal code could be made such that a list of allowed postal codes per country is
available.

The other part of the goodsDeclaration consists of an identifier with details
specified by attributes and sub concepts. We have chosen to use an identifier as a
basic concept for representing the classes in the ITAIDE class diagram, e.g.
‘shipmentIdentifier’ is a concept with particular attributes and ‘packagingType’
identifies the packages. The following examples show the specification of the concept
‘shipmentIdentifier’.

Concept shipmentIdentifier subConceptOf
goodsDeclarationIdentifier

 departureDate impliesType _dateTime
 arrivalDate impliesType _dateTime

The concepts carrier, shipper, consignee, and notify refer to the core concepts.
Each instance of these concepts represents a name, e.g. the instance ‘Heineken’ is the
name of a shipper. Reference to the core concepts is by adding an attribute ‘address’.
In this particular example, the shipper Heineken is represented as:
instance HeinekenNL memberOf shipper
 address hasValue mainAddress
 shipperIdentifier hasValue "HE_NL"

instance mainAddress memberOf address
 city hasValue Zoetermeer
 postalCode hasValue "1111 HE"
 streetAndNumber hasValue "mainStreet_14"

instance Zoetermeer memberOf city
 code hasValue "ZTM"

Another relevant aspect of WSMO is ‘axiom’. An axiom expresses integrity rules

that are applicable to instances of concepts and their attributes. The ITAIDE class
diagram does not contain integrity rules. However, one could envisage the following
integrity rule (in wording): a TREC device can not be attached to two containers at
the same time. To add this particular axiom, the ‘goodsDeclaration’ ontology needs to
be extended with the concept ‘TRECdevice’ that can have an association with
‘packagingType’. The TRECNumber itself is an attribute of ‘packagingType’. In
addition, to this axiom, one could state an axiom that TREC devices are only
managed by trusted authorities with value TDA (TREC Device Authority). This
axiom also needs further extension of the ITAIDE ontology (?x represents a variable).

axiom TRECDeviceManagement
 definedby
 ?x memberOf TRECDevice
 Implies ?x[issuingAuthority hasValue TDA]

Note that the concept ‘location’ for tracking and tracing purposes of a container is
not included in the figure. We have included location in the ITAIDE ontology.
‘Location’ can be defined in different ways, e.g. as an ‘address’, ‘city’, and
‘coordinate’. In case ‘address’ or ‘city’ is chosen as a location, an entry and departure
date and time needs to be included to trace container movements. In case ‘coordinate’
is the means to locate a container, a coordinate may have to be transformed into an
address or city, depending on requirements of the role interested in container

movements. Other enhancements to the ITAIDE ontology model are for instance core
components like packaging types and including additional concepts and attributes like
shown in the original class diagram. Also, the physical status of a container can be
included in the ontology to produce temperature settings at certain dates and time.

Additional rules (axioms in WSMO) can be included in the ITAIDE ontology to
safeguard that authorised opening of a container by removing a TREC device is only
allowed at the final destination or the actual temperature setting must be between
minimum and maximum allowed temperature values between place of departure and
the final destination. Web services can be triggered in case one or more of such
axioms are violated.

4.2 Process requirements

The process part of WSMO is expressed by goals/capability and choreography.
WSMO is intended to construct a formal model of web services of a service provider
that can be invoked to meet a goal of a customer. It implies that WSMO is intended to
construct a formal model of each individual service provider in a service system and
not a complete service system. This adheres to one of the design principles of
WSMO: decoupling to reflect the nature of services. Per service provider, a capability
and interface needs to be modelled. These can all be part of one WSMO specification,
since one WSMO model can encompass more than one capability.

We have identified process requirements of the BeerLL for support of value
chains. It is relatively easy to specify the goal of a customer of Heineken UK, but
definition of Heineken’s capabilities needs further consideration. Goal mediation
relates to a value chain. The selection of a value chain by Heineken UK is based on
the goal of a particular customer in terms of for instance delivery time, the customer
status as perceived by Heineken UK (e.g. outstanding payments and returning
customer), available stock in a warehouse versus required volume, and an allocation
mechanism for assigning volumes of beer to meet simultaneous customer goals. Since
value chain selection encompasses rules and access to other data, a capability needs to
be formulated for those aspects that value chains have in common and are not derived
from other services. Such a capability consists of transitions for including allocation
services and accessing other relevant data. Variations of this standard capability are
possible, e.g. Heineken may decide to specify particular capabilities for loyal
customers. We will not specify this capability formally, since it is easy to define, but
focus on the other process requirements of BeerLL. These need to be supported by the
concept ‘interface’.

5 Evaluation

This section gives an evaluation of the requirements of BeerLL to a modeling
technique. Data -, process requirements, and autonomy are discussed.

5.1 Support of data requirements

We conclude that ontology as supported by WSMO is able to meet data requirements
for service systems like BeerLL. The tools, WSMO Studio, do not yet fully support
the functionality offered by ontology languages like OWL, since layers of ontology
can not be supported by the tool. An issue is grounding of ontology to WSDL and
XML Schema. If WSMO is considered for formally modeling a service system, the
WSDLs need to be derived from choreography. This part of the grounding is not
clearly described. Grounding to XML Schema in WSMO is the transformation of
ontology to one XML Schema. However, the rules can not be represented in an XML
Schema. Real life service systems like BeerLL therefore consist of an XML Schema
for each interaction type, which means that an XML Schema needs to be derived from
a choreography and ontology. Another way would generate an XML Schema and a
set of rules in a rule language, which are referred to by an XML document. This needs
further research.

5.2 Support of process requirements

We have identified three process requirements, that we will discuss seperately. The
first process requirement is the support of business rules for selection of a value chain.
These rules are partially implemented in allocation mechanisms, but additionally they
have to be implemented on top of a WSMO model by using policy languages like
WS-Policy [31]. They are not part of the model itself and it is not clearly defined how
these policies can govern the execution of transition rules. They are said to be
incidental details for service execution [31].

The second process requirement is that of interleaving of interactions that allows
the reception of interactions in an arbitrary order. Basically, a formal method like
WSMO offers a set of transition rules that can be executed only depending on
preconditions of a transition rule, and thus support interleaving.

The third process requirement is the derivation of XML schema for each input or
output formally specified in WSMO choreography. WSMO supports so-called
grounding of in- and output of transitions to WSMO operations. Whereas WSMO
considers an information space represented by ontology and transition rules consider
the state of this information space, the relation between XML schema for web service
operations and the WSMO information space is specified by transformation between
XML schema elements and the ontology of the information space. A direct relation
between XML schema elements and ontology is not required by WSMO, which
allows WSMO to operate on top of existing web services specification. Thus, WSMO
can be used independent of any web service specifications, which makes it difficult to
derive those specifications out of a WSMO model.

5.3 Autonomy

One of the basic design principles of WSMO is to describe each resource separately
to reflect the distributed nature of the web (decoupling). Each service provider offers

a service with its particular semantics and choreography. The semantics and
choreography of a customer will be different. This inherent difference can be solved
in various ways:

1. A mash up kind of way in which a customer includes the services of a
service provider in its semantics and transitions, because there is a need to
do business with that service provider (e.g. legal or economic need).

2. Runtime mediation of semantics and choreography of services. We have
not yet found any reference that this type of mediation is supported by
software. In practical situations, so-called intermediates like forwarders
offer this functionality.

3. Mediation via a common model specifying semantics that potential
customers and providers have in common and its related choreography in
terms of what we would call collaboration protocols. These common
models have to be organization independent. Common models are defined
once and each organization can map its semantics and choreography to
these common models.

Whereas the first solution requires many transformations, the third solution
requires far less. Once the number of services and customers grows, and the number
of different collaboration protocols decreases, a common model approach requires
fewer transformations than a mash up approach. Further research is required to both
approaches from a cost/benefit perspective.

6 Conclusions and further research

The evaluation shows that ontology is useful for modeling semantics in service
systems, although grounding to technical solutions like WSDL and XML Schema
needs further consideration. From a process perspective, a modeling technique like
WSMO seems to be applicable, but needs to consider choreography and orchestration
as separate issues. A graphical user interface, logical operators and ‘time’ may offer
solutions to non-determinism. Operators are already defined by other formal methods
like process algebras [24]. These basic control-flow patterns are also implemented by
business process modelling languages like BPMn [23]. Since languages like BPMn
and Petri Nets are supported by graphical tools and they support workflow patterns,
these might be considered as formal methods for modeling service systems. Whereas
BPMn 1.0 does not have a formal basis, Petri Nets have (see also [19]). A weakness
of Petri Nets is its support of data modeling. It considers tokens, but is not concerned
about the underlying semantic model of the tokens in the net. There are extensions to
Petri Nets to include XML Schema [27]. Workflow control-patterns are specified
using timed, coloured Petri Nets [32].

From an autonomy perspective, the most important requirement, different
mediations approaches need further study. Cost/benefit analysis of these approaches
also needs further study.

Additionally, we think concepts in relation to modeling techniques need further
research. Existing modeling techniques encompass concepts, but those concepts don’t
seem sufficient to model service systems at business level.

References

1. D. Fensel, M. Kerrigan, M. Zaremba (eds.), Implementing Semantic Web Services – the
SESA framework, Springer-Verlag, 2008.

2. UN/CEFACT - United Nations Centre for Trade Facilitation and Electronic Business,
UN/CEFACT’s Modelling Method – Base Module version 1, 2006.

3. J. Heineke, M. Davis, The emergence of service operations management as an academic
discipline, Journal of Operations Management 25 (2007) 364–374.

4. J. Spohrer. and S.K. Kwam, Service Science, Management, Engineering and Design
(SSMED) – An emerging Discipline – Outline and references, International Journal on
Information Systems in the Service Sector, May 2009.

5. ISO 15000-5:2006, Core Component Technical Specification, draft version 2.2.
6. W.J. Hofman, EDI, Web Service and ebXML, communication in organisation networks,

UTN, 2003 (in Dutch).
7. T. Erl, Service-Oriented Architecture – concepts, technology, and design, Prentice Hall,

2005.
8. OWL-S, Semantic Markup for Web Services, W3C member submission, 2004.
9. J.Scicluna, C.Abela, and M.Montebello, Visual Modelling of OWL-S Services,

Proceedings of the IADIS International Conference WWW/Internet, Madrid, Spain,
October 2004.

10. SAWSDL, Semantic Annotations for WSDL and XML Schema, W3C Recommendation,
2007.

11. K. Sivashanmugam, KunalVerma, AmitSheth, John A. Miller, Adding Semantic to Web
Service Standards, ICWS 2003.

12. C. Feier, D. Roman, A Polleres, J. Domingue, M. Stollberg, and D. Fensel, Towards
Intelligent Web Services: The Web Service Modelling Ontology (WSMO), in Proceedings
of the International Conference of Intelligent Computing (ICIC’05), 2005.

13. J. Davies, R. Studer, and P. Warren, Semantic Web technologies – trends and research in
ontology-based systems, John Wiley & Sons, 2006.

14. E. Börger: "High Level System Design and Analysis Using Abstract State Machines",
Proceedings of the International Workshop on Current Trends in Applied Formal Method:
Applied Formal Methods, p.1-43, October 07-09, 1998

15. J. Scicluna, A. Polleres, and D. Roman (editors), D14v0.2 Ontology-based choreography
and orchestration of WSMO services, WSMO final draft February 3rd 2006.

16. Dublin Core Metadata Element Set, Version 1.1, 2008-01-14, www.dublincore.org.
17. X. Wang, T. Vitvar, V. Peristeras, A. Mocan, S. Goudos and K.Tarabanis, WSMO-PA:

Formal specification of Public Administration Service model on Semantic Web Service
Ontology, Proceedings of the 40th Annual Hawaii International Conference on System
Sciences, 2007.

18. H.M.W. Verbeek, A.J. Pretorius, W.M.P. van der Aalst ... [et al.], Visualizing state spaces
with Petri Nets, Eindhoven : Technische Universiteit Eindhoven, 2007.

19. Aalst, W.M.P. van der, Beisiegel, M., Hee, K.M. van, König, D., Stahl, C. (2007). A SOA-
based architecture framework. International Journal of Business Process Integration and
Management, 2(2), 91-101.

20. http://www.douane.nl/zakelijk/ accijnzen/en/accijnzen-07.html.
21. http://www.zurich.ibm.com/csc/ process/securetradelane.html.
22. http://formalmethods.wikia. com/wiki/Formal_methods.
23. Business Process Modelling Notation (BPMN), version 1.2, january 2009.
24. E. Brinksma, On the design of extended LOTOS – a specification language for Open

Distributed Systems, 1988.
25. D24.2v0.1. WSMO Grounding, WSMO Working Draft 27 April 2007.

26. R. van der Toorn, Component-Based Software design with Petri Nets – an approach based
on inheritance of behaviour, Ph.D. thesis, Eindhoven University of Technology, 2004.

27. http://www.yawl-system.com/.
28. http://en.wikipedia.org/wiki/Service_system.
29. Lankhorst M., et.al., Enterprise Architecture at work, Springer, 2005.
30. Lovelock, Wirtz, "Services Marketing: People, Technology, Strategy," 6/e, Upper Saddle

River NJ: Prentice Hall, 2007.
31. Vitvar T., Zaremba M., Moran M., Zaremba M., and Fensel D., SESA: Emerging

Technology for Service-Centric Environments, IEEE Software, vol 24, no. 6,
November/December 2007.

32. Russel N., Hofstede A.H.M. ter, Aalst W.M.P. van der, Mulyar N., Workflow control-
patterns – a revised view, BPM Center Report BPM-06-22 , BPMcenter.org, 2006.

33. Tan Y.H., Hofman W.J., Gordijn J., Hulstijn J., A framework for the design of service
systems, The Science of Service Systems, Springer, 2010 (to appear).

34. Quartel D., Steen M.W.A., Pokraev S., Sinderen M. van, A condecptual framework for
service modelling, EDOC 2006, 319-330.

